Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 59(7): 911-923.e4, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38447569

RESUMO

Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagia/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagossomos/metabolismo
2.
Nat Plants ; 10(3): 512-524, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38396112

RESUMO

The balance between linear electron transport (LET) and cyclic electron transport (CET) plays an essential role in plant adaptation and protection against photo-induced damage. This balance is largely maintained by phosphorylation-driven alterations in the PSII-LHCII assembly and thylakoid membrane stacking. During the dark-to-light transition, plants shift this balance from CET, which prevails to prevent overreduction of the electron transport chain and consequent photo-induced damage, towards LET, which enables efficient CO2 assimilation and biomass production. Using freeze-fracture cryo-scanning electron microscopy and transmission electron microscopy of Arabidopsis leaves, we reveal unique membrane regions possessing characteristics of both stacked and unstacked regions of the thylakoid network that form during this transition. A notable consequence of the morphological attributes of these regions, which we refer to as 'stacked thylakoid doublets', is an overall increase in the proximity and connectivity of the two photosystems (PSI and PSII) that drive LET. This, in turn, reduces diffusion distances and barriers for the mobile carriers that transfer electrons between the two PSs, thereby maximizing LET and optimizing the plant's ability to utilize light energy. The mechanics described here for the shift between CET and LET during the dark-to-light transition are probably also used during chromatic adaptation mediated by state transitions.


Assuntos
Arabidopsis , Tilacoides , Tilacoides/metabolismo , Transporte de Elétrons , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Elétrons , Complexos de Proteínas Captadores de Luz/metabolismo , Arabidopsis/metabolismo , Luz , Fotossíntese
3.
ACS Nano ; 17(21): 20962-20967, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37871004

RESUMO

Development of biodegradable plastic materials is of primary importance in view of acute environmental and health problems associated with the accumulation of plastic waste. We fabricated a biodegradable composite material based on hydroxyethyl cellulose polymer and tyrosine nanocrystals, which demonstrates enhanced strength and ductility (typically mutually excluding properties), superior to most biodegradable plastics. This emergent behavior results from an assembly pattern that leads to a uniform nanoscale morphology and strong interactions between the components. Water-resistant biodegradable composites encapsulated with hydrophobic polycaprolactone as a protection layer were also fabricated. Self-assembly of robust sustainable plastics with emergent properties by using readily available building blocks provides a valuable toolbox for creating sustainable materials.

4.
Nat Plants ; 9(5): 817-831, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37127748

RESUMO

Modulation of the endocannabinoid system is projected to have therapeutic potential in almost all human diseases. Accordingly, the high demand for novel cannabinoids stimulates the discovery of untapped sources and efficient manufacturing technologies. Here we explored Helichrysum umbraculigerum, an Asteraceae species unrelated to Cannabis sativa that produces Cannabis-type cannabinoids (for example, 4.3% cannabigerolic acid). In contrast to Cannabis, cannabinoids in H. umbraculigerum accumulate in leaves' glandular trichomes rather than in flowers. The integration of de novo whole-genome sequencing data with unambiguous chemical structure annotation, enzymatic assays and pathway reconstitution in Nicotiana benthamiana and in Saccharomyces cerevisiae has uncovered the molecular and chemical features of this plant. Apart from core biosynthetic enzymes, we reveal tailoring ones producing previously unknown cannabinoid metabolites. Orthology analyses demonstrate that cannabinoid synthesis evolved in parallel in H. umbraculigerum and Cannabis. Our discovery provides a currently unexploited source of cannabinoids and tools for engineering in heterologous hosts.


Assuntos
Canabinoides , Cannabis , Humanos , Canabinoides/metabolismo , Cannabis/genética , Flores/metabolismo , Folhas de Planta/metabolismo
5.
ACS Omega ; 8(20): 17856-17868, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251186

RESUMO

Antibiotic-resistant bacterial infections have increased the prevalence of sepsis and septic shock mortality worldwide and have become a global concern. Antimicrobial peptides (AMPs) show remarkable properties for developing new antimicrobial agents and host response modulatory therapies. A new series of AMPs derived from pexiganan (MSI-78) were synthesized. The positively charged amino acids were segregated at their N- and C-termini, and the rest of the amino acids created a hydrophobic core surrounded by positive charges and were modified to simulate the lipopolysaccharide (LPS). The peptides were investigated for their antimicrobial activity and LPS-induced cytokine release inhibition profile. Various biochemical and biophysical methods were used, including attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, microscale thermophoresis (MST), and electron microscopy. Two new AMPs, MSI-Seg-F2F and MSI-N7K, preserved their neutralizing endotoxin activity while reducing toxicity and hemolytic activity. Combining all of these properties makes the designed peptides potential candidates to eradicate bacterial infection and detoxify LPS, which might be useful for sepsis treatment.

6.
EMBO J ; 41(23): e110771, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300838

RESUMO

Autophagy, a conserved eukaryotic intracellular catabolic pathway, maintains cell homeostasis by lysosomal degradation of cytosolic material engulfed in double membrane vesicles termed autophagosomes, which form upon sealing of single-membrane cisternae called phagophores. While the role of phosphatidylinositol 3-phosphate (PI3P) and phosphatidylethanolamine (PE) in autophagosome biogenesis is well-studied, the roles of other phospholipids in autophagy remain rather obscure. Here we utilized budding yeast to study the contribution of phosphatidylcholine (PC) to autophagy. We reveal for the first time that genetic loss of PC biosynthesis via the CDP-DAG pathway leads to changes in lipid composition of autophagic membranes, specifically replacement of PC by phosphatidylserine (PS). This impairs closure of the autophagic membrane and autophagic flux. Consequently, we show that choline-dependent recovery of de novo PC biosynthesis via the CDP-choline pathway restores autophagosome formation and autophagic flux in PC-deficient cells. Our findings therefore implicate phospholipid metabolism in autophagosome biogenesis.


Assuntos
Autofagossomos , Fosfolipídeos , Autofagossomos/metabolismo , Fosfolipídeos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Colina/metabolismo , Cistina Difosfato/metabolismo
7.
Biochemistry ; 60(39): 2943-2955, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34547893

RESUMO

The increasing number of resistant bacteria is a major threat worldwide, leading to the search for new antibiotic agents. One of the leading strategies is the use of antimicrobial peptides (AMPs), cationic and hydrophobic innate immune defense peptides. A major target of AMPs is the bacterial membrane. Notably, accumulating data suggest that AMPs can activate the two-component systems (TCSs) of Gram-negative bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible for remodeling of the bacterial cell surface. To better understand this mechanism, we utilized bacteria deficient either in one system alone or in both and biophysical tools including fluorescence spectroscopy, single-cell atomic force microscopy, electron microscopy, and mass spectrometry (Moskowitz, S. M.; Antimicrob. Agents Chemother. 2012, 56, 1019-1030; Cheng, H. Y.; J. Biomed. Sci. 2010, 17, 60). Our data suggested that the two systems have opposing effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs by making the surface less rigid, more polarized, and permeable with a slightly more negatively charged cell wall. In addition, the periplasmic space is thinner. In contrast, the knockout of PmrAB did not affect its susceptibility, while it made the bacterial outer layer very rigid, less polarized, and less permeable than the other two mutants, with a negatively charged cell wall similar to the WT. Overall, the data suggest that the coexistence of systems with opposing effects on the biophysical properties of the bacteria contribute to their membrane flexibility, which, on the one hand, is important to accommodate changing environments and, on the other hand, may inhibit the development of meaningful resistance to AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Infecções por Salmonella/tratamento farmacológico , Salmonella enterica/efeitos dos fármacos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Periplasma/efeitos dos fármacos , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella enterica/isolamento & purificação , Salmonella enterica/metabolismo , Sorogrupo
8.
Biophys J ; 120(18): 4002-4012, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34411577

RESUMO

Leukocyte microvilli are elastic actin-rich projections implicated in rapid sensing and penetration across glycocalyx barriers. Microvilli are critical for the capture and arrest of flowing lymphocytes by high endothelial venules, the main lymph node portal vessels. T lymphocyte arrest involves subsecond activation of the integrin LFA-1 by the G-protein-coupled receptor CCR7 and its endothelial-displayed ligands, the chemokines CCL21 and CCL19. The topographical distribution of CCR7 and of LFA-1 in relation to lymphocyte microvilli has never been elucidated. We applied the recently developed microvillar cartography imaging technique to determine the topographical distribution of CCR7 and LFA-1 with respect to microvilli on peripheral blood T lymphocytes. We found that CCR7 is clustered on the tips of T cell microvilli. The vast majority of LFA-1 molecules were found on the cell body, likely assembled in macroclusters, but a subset of LFA-1, 5% of the total, were found scattered within 20 nm from the CCR7 clusters, implicating these LFA-1 molecules as targets for inside-out activation signals transmitted within a fraction of a second by chemokine-bound CCR7. Indeed, RhoA, the key GTPase involved in rapid LFA-1 affinity triggering by CCR7, was also found to be clustered near CCR7. In addition, we observed that the tyrosine kinase JAK2 controls CCR7-mediated LFA-1 affinity triggering and is also highly enriched on tips of microvilli. We propose that tips of lymphocyte microvilli are novel signalosomes for subsecond CCR7-mediated inside-out signaling to neighboring LFA-1 molecules, a critical checkpoint in LFA-1-mediated lymphocyte arrest on high endothelial venules.


Assuntos
Quimiocina CCL21 , Antígeno-1 Associado à Função Linfocitária , Linfócitos , Microvilosidades , Receptores CCR7
9.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727363

RESUMO

Protein secretion as well as the assembly of bacterial motility appendages are central processes that substantially contribute to fitness and survival. This study highlights distinctive features of the mechanism that serves these functions in cyanobacteria, which are globally prevalent photosynthetic prokaryotes that significantly contribute to primary production. Our studies of biofilm development in the cyanobacterium Synechococcus elongatus uncovered a novel component required for the biofilm self-suppression mechanism that operates in this organism. This protein, which is annotated as "hypothetical," is denoted EbsA (essential for biofilm self-suppression A) here. EbsA homologs are highly conserved and widespread in diverse cyanobacteria but are not found outside this clade. We revealed a tripartite complex of EbsA, Hfq, and the ATPase homolog PilB (formerly called T2SE) and demonstrated that each of these components is required for the assembly of the hairlike type IV pili (T4P) appendages, for DNA competence, and affects the exoproteome in addition to its role in biofilm self-suppression. These data are consistent with bioinformatics analyses that reveal only a single set of genes in S. elongatus to serve pilus assembly or protein secretion; we suggest that a single complex is involved in both processes. A phenotype resulting from the impairment of the EbsA homolog in the cyanobacterium Synechocystis sp. strain PCC 6803 implies that this feature is a general cyanobacterial trait. Moreover, comparative exoproteome analyses of wild-type and mutant strains of S. elongatus suggest that EbsA and Hfq affect the exoproteome via a process that is independent of PilB, in addition to their involvement in a T4P/secretion machinery.IMPORTANCE Cyanobacteria, environmentally prevalent photosynthetic prokaryotes, contribute ∼25% of global primary production. Cyanobacterial biofilms elicit biofouling, thus leading to substantial economic losses; however, these microbial assemblages can also be beneficial, e.g., in wastewater purification processes and for biofuel production. Mechanistic aspects of cyanobacterial biofilm development were long overlooked, and genetic and molecular information emerged only in recent years. The importance of this study is 2-fold. First, it identifies novel components of cyanobacterial biofilm regulation, thus contributing to the knowledge of these processes and paving the way for inhibiting detrimental biofilms or promoting beneficial ones. Second, the data suggest that cyanobacteria may employ the same complex for the assembly of the motility appendages, type 4 pili, and protein secretion. A shared pathway was previously shown in only a few cases of heterotrophic bacteria, whereas numerous studies demonstrated distinct systems for these functions. Thus, our study broadens the understanding of pilus assembly/secretion in diverse bacteria and furthers the aim of controlling the formation of cyanobacterial biofilms.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Fímbrias Bacterianas/fisiologia , Proteoma , Synechococcus/química , Synechococcus/fisiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Biogênese de Organelas , Transporte Proteico , Via Secretória/genética , Via Secretória/fisiologia , Synechococcus/genética
10.
Cancer Res ; 81(7): 1639-1653, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33547159

RESUMO

Gastric cancer is the third most lethal cancer worldwide, and evaluation of the genomic status of gastric cancer cells has not translated into effective prognostic or therapeutic strategies. We therefore hypothesize that outcomes may depend on the tumor microenvironment (TME), in particular, cancer-associated fibroblasts (CAF). However, very little is known about the role of CAFs in gastric cancer. To address this, we mapped the transcriptional landscape of human gastric cancer stroma by microdissection and RNA sequencing of CAFs from patients with gastric cancer. A stromal gene signature was associated with poor disease outcome, and the transcription factor heat shock factor 1 (HSF1) regulated the signature. HSF1 upregulated inhibin subunit beta A and thrombospondin 2, which were secreted in CAF-derived extracellular vesicles to the TME to promote cancer. Together, our work provides the first transcriptional map of human gastric cancer stroma and highlights HSF1 and its transcriptional targets as potential diagnostic and therapeutic targets in the genomically stable tumor microenvironment. SIGNIFICANCE: This study shows how HSF1 regulates a stromal transcriptional program associated with aggressive gastric cancer and identifies multiple proteins within this program as candidates for therapeutic intervention. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/7/1639/F1.large.jpg.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Vesículas Extracelulares/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Neoplasias Gástricas/patologia , Animais , Fibroblastos Associados a Câncer/patologia , Células Cultivadas , Estudos de Coortes , Progressão da Doença , Vesículas Extracelulares/patologia , Fatores de Transcrição de Choque Térmico/genética , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Invasividade Neoplásica , Fenótipo , Prognóstico , Via Secretória/fisiologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Análise de Sobrevida , Microambiente Tumoral/fisiologia
11.
Science ; 370(6514): 335-338, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060358

RESUMO

The lubrication of hydrogels arises from fluid or solvated surface phases. By contrast, the lubricity of articular cartilage, a complex biohydrogel, has been at least partially attributed to nonfluid, lipid-exposing boundary layers. We emulated this behavior in synthetic hydrogels by incorporating trace lipid concentrations to create a molecularly thin, lipid-based boundary layer that renews continuously. We observed a 80% to 99.3% reduction in friction and wear relative to the lipid-free gel, over a wide range of conditions. This effect persists when the gels are dried and then rehydrated. Our approach may provide a method for sustained, extreme lubrication of hydrogels in applications from tissue engineering to clinical diagnostics.


Assuntos
Cartilagem Articular/química , Hidrogéis/química , Lubrificantes/química , Lubrificação , Fricção , Lipídeos/química
13.
Nat Chem Biol ; 16(9): 939-945, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661377

RESUMO

Protein self-organization is a hallmark of biological systems. Although the physicochemical principles governing protein-protein interactions have long been known, the principles by which such nanoscale interactions generate diverse phenotypes of mesoscale assemblies, including phase-separated compartments, remain challenging to characterize. To illuminate such principles, we create a system of two proteins designed to interact and form mesh-like assemblies. We devise a new strategy to map high-resolution phase diagrams in living cells, which provide self-assembly signatures of this system. The structural modularity of the two protein components allows straightforward modification of their molecular properties, enabling us to characterize how interaction affinity impacts the phase diagram and material state of the assemblies in vivo. The phase diagrams and their dependence on interaction affinity were captured by theory and simulations, including out-of-equilibrium effects seen in growing cells. Finally, we find that cotranslational protein binding suffices to recruit a messenger RNA to the designed micron-scale structures.


Assuntos
Proteínas Luminescentes/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Sobrevivência Celular , Difusão , Escherichia coli/genética , Recuperação de Fluorescência Após Fotodegradação , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Transição de Fase , Mutação Puntual , Domínios Proteicos , Multimerização Proteica , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Viscosidade
14.
Angew Chem Int Ed Engl ; 59(34): 14593-14601, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32472617

RESUMO

The growth of spontaneously twisted crystals is a common but poorly understood phenomenon. An analysis of the formation of twisted crystals of a metastable benzamide polymorph (form II) crystallizing from highly supersaturated aqueous and ethanol solutions is given here. Benzamide, the first polymorphic molecular crystal reported (1832), would have been the first helicoidal crystal observed had the original authors undertaken an analysis by light microscopy. Polymorphism and twisting frequently concur as they are both associated with high thermodynamic driving forces for crystallization. Optical and electron microscopies as well as electron and powder X-ray diffraction reveal a complex lamellar structure of benzamide form II needle-like crystals. The internal stress produced by the overgrowth of lamellae is shown to be able to create a twist moment that is responsible for the observed non-classical morphologies.

15.
Cell Rep ; 30(10): 3434-3447.e6, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160548

RESUMO

T cell surfaces are covered with microvilli, actin-rich and flexible protrusions. We use super-resolution microscopy to show that ≥90% of T cell receptor (TCR) complex molecules TCRαß and TCRζ, as well as the co-receptor CD4 (cluster of differentiation 4) and the co-stimulatory molecule CD2, reside on microvilli of resting human T cells. Furthermore, TCR proximal signaling molecules involved in the initial stages of the immune response, including the protein tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) and the key adaptor LAT (linker for activation of T cells), are also enriched on microvilli. Notably, phosphorylated proteins of the ERM (ezrin, radixin, and moesin) family colocalize with TCRαß as well as with actin filaments, implying a role for one or more ERMs in linking the TCR complex to the actin cytoskeleton within microvilli. Our results establish microvilli as key signaling hubs, in which the TCR complex and its proximal signaling molecules and adaptors are preassembled prior to activation in an ERM-dependent manner, facilitating initial antigen sensing.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Actinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Células Jurkat , Microvilosidades/ultraestrutura , Nanotecnologia
16.
J Struct Biol ; 210(1): 107465, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981742

RESUMO

The formation of coccoliths, intricate calcium carbonate scales that cover the cells of unicellular marine microalgae, is a highly regulated biological process. For decades, scientists have tried to elucidate the cellular, chemical, and structural mechanisms that control the precise mineralogy and shape of the inorganic crystals. Transmission electron microscopy was pivotal in characterizing some of the organelles that orchestrate this process. However, due to the difficulties in preserving soluble inorganic phases during sample preparation, only recently, new intracellular ion-pools were detected using state-of-the-art cryo X-ray and electron microscopy techniques. Here, we combine a completely non-aqueous sample preparation procedure and room temperature electron microscopy, to investigate the presence, cellular location, and composition, of mineral phases inside mineral forming microalga species. This methodology, which fully preserves the forming coccoliths and the recently identified Ca-P-rich bodies, allowed us to identify a new class of ion-rich compartments that have complex internal structure. In addition, we show that when carefully choosing heavy metal stains, elemental analysis of the mineral phases can give accurate chemical signatures of the inorganic phases. Applying this approach to mineral forming microalgae will bridge the gap between the low-preservation power for inorganic phases of conventional chemical-fixation based electron microscopy, and the low-yield of advanced cryo techniques.


Assuntos
Íons/metabolismo , Microalgas/metabolismo , Microalgas/ultraestrutura , Microscopia Eletrônica de Transmissão , Temperatura
17.
Nat Commun ; 11(1): 409, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964869

RESUMO

The Golgi is a dynamic organelle whose correct assembly is crucial for cellular homeostasis. Perturbations in Golgi structure are associated with numerous disorders from neurodegeneration to cancer. However, whether and how dispersal of the Golgi apparatus is actively regulated under stress, and the consequences of Golgi dispersal, remain unknown. Here we demonstrate that 26S proteasomes are associated with the cytosolic surface of Golgi membranes to facilitate Golgi Apparatus-Related Degradation (GARD) and degradation of GM130 in response to Golgi stress. The degradation of GM130 is dependent on p97/VCP and 26S proteasomes, and required for Golgi dispersal. Finally, we show that perturbation of Golgi homeostasis induces cell death of multiple myeloma in vitro and in vivo, offering a therapeutic strategy for this malignancy. Taken together, this work reveals a mechanism of Golgi-localized proteasomal degradation, providing a functional link between proteostasis control and Golgi architecture, which may be critical in various secretion-related pathologies.


Assuntos
Complexo de Golgi/metabolismo , Ionóforos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase/fisiologia , Animais , Apoptose/efeitos dos fármacos , Autoantígenos/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Complexo de Golgi/efeitos dos fármacos , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Ionóforos/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Monensin/farmacologia , Monensin/uso terapêutico , Mieloma Múltiplo/patologia , Proteólise/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Proteína com Valosina/metabolismo
18.
Bone ; 130: 115086, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669250

RESUMO

Endochondral ossification in the growth plate of long bones involves cartilage mineralization, bone formation and the budding vasculature. Many of these processes take place in a complex and dynamic zone, the provisional ossification zone, of the growth plate. Here we investigate aspects of mineralization in 2D and 3D in the provisional ossification zone at different length scales using samples preserved under cryogenic or fully hydrated conditions. We use confocal light microscopy, cryo-SEM and micro-CT in the phase contrast mode. We show in 9 week old BALB/c mice the presence of vesicles containing mineral particles in the blood serum, as well as mineral particles without membranes integrated with the blood vessel walls. We also observe labeled mineral particles within cells associated with bone formation, but not in the hypertrophic cartilage cells that are involved with cartilage mineralization. High resolution micro-CT images of fresh hydrated tibiae, show that there are open continuous pathways between the blood vessel extremities and the hypertrophic chondrocyte zone. As the blood vessel extremities, the mineralizing cartilage and the forming bone are all closely associated within this narrow zone, we raise the possibility that in addition to ion transport, mineral necessary for both cartilage and bone formation is also transported through the vasculature.


Assuntos
Condrócitos , Lâmina de Crescimento , Animais , Cartilagem , Camundongos , Camundongos Endogâmicos BALB C , Osteogênese
19.
Development ; 146(23)2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740533

RESUMO

To maintain body homeostasis, endocrine systems must detect and integrate blood-borne peripheral signals. This is mediated by fenestrae, specialized permeable pores in the endothelial membrane. Plasmalemma vesicle-associated protein (Plvap) is located in the fenestral diaphragm and is thought to play a role in the passage of proteins through the fenestrae. However, this suggested function has yet to be demonstrated directly. We studied the development of fenestrated capillaries in the hypophysis, a major neuroendocrine interface between the blood and brain. Using a transgenic biosensor to visualize the vascular excretion of the genetically tagged plasma protein DBP-EGFP, we show that the developmental acquisition of vascular permeability coincides with differential expression of zebrafish plvap orthologs in the hypophysis versus brain. Ultrastructural analysis revealed that plvapb mutants display deficiencies in fenestral diaphragms and increased density of hypophyseal fenestrae. Measurements of DBP-EGFP extravasation in plvapb mutants provided direct proof that Plvap limits the rate of blood-borne protein passage through fenestrated endothelia. We present the regulatory role of Plvap in the development of blood-borne protein detection machinery at a neuroendocrine interface through which hormones are released to the general circulation.


Assuntos
Permeabilidade Capilar/fisiologia , Endotélio Vascular/metabolismo , Proteínas de Membrana/metabolismo , Hipófise/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Proteínas de Membrana/genética , Mutação , Transporte Proteico/fisiologia , Peixe-Zebra/genética
20.
Proc Natl Acad Sci U S A ; 116(44): 22366-22375, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611387

RESUMO

Plant photosynthetic (thylakoid) membranes are organized into complex networks that are differentiated into 2 distinct morphological and functional domains called grana and stroma lamellae. How the 2 domains join to form a continuous lamellar system has been the subject of numerous studies since the mid-1950s. Using different electron tomography techniques, we found that the grana and stroma lamellae are connected by an array of pitch-balanced right- and left-handed helical membrane surfaces of different radii and pitch. Consistent with theoretical predictions, this arrangement is shown to minimize the surface and bending energies of the membranes. Related configurations were proposed to be present in the rough endoplasmic reticulum and in dense nuclear matter phases theorized to exist in neutron star crusts, where the right- and left-handed helical elements differ only in their handedness. Pitch-balanced helical elements of alternating handedness may thus constitute a fundamental geometry for the efficient packing of connected layers or sheets.


Assuntos
/ultraestrutura , Tilacoides/ultraestrutura , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/ultraestrutura , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...